
Recurrent Partial Kernel Network for Efficient Optical Flow Estimation

Henrique Morimitsu1, Xiaobin Zhu1*, Xiangyang Ji2, Xu-Cheng Yin1

1 School of Computer and Communication Engineering, University of Science and Technology Beijing, China
2 Department of Automation, Tsinghua University, China

{hmori, zhuxiaobin, xuchengyin}@ustb.edu.cn, xyji@tsinghua.edu.cn

Abstract

Optical flow estimation is a challenging task consisting of
predicting per-pixel motion vectors between images. Recent
methods have employed larger and more complex models to
improve the estimation accuracy. However, this impacts the
widespread adoption of optical flow methods and makes it
harder to train more general models since the optical flow
data is hard to obtain. This paper proposes a small and ef-
ficient model for optical flow estimation. We design a new
spatial recurrent encoder that extracts discriminative fea-
tures at a significantly reduced size. Unlike standard recur-
rent units, we utilize Partial Kernel Convolution (PKConv)
layers to produce variable multi-scale features with a sin-
gle shared block. We also design efficient Separable Large
Kernels (SLK) to capture large context information with low
computational cost. Experiments on public benchmarks show
that we achieve state-of-the-art generalization performance
while requiring significantly fewer parameters and memory
than competing methods. Our model ranks first in the Spring
benchmark without finetuning, improving the results by over
10% while requiring an order of magnitude fewer FLOPs and
over four times less memory than the following published
method without finetuning. The code is available at github.
com/hmorimitsu/ptlflow/tree/main/ptlflow/models/rpknet.

Introduction
Optical flow estimation is a fundamental computer vision
problem and consists of computing the 2D motion vectors
between all pixels of a pair of consecutive video frames. It
has applications in multiple fields, such as action recogni-
tion, object tracking, video interpolation, and autonomous
navigation.

Recent optical flow methods have been showing outstand-
ing progress but at the cost of increasing the size and com-
plexity of the models. On the one hand, the rise in compu-
tational cost hinders the applications of newer methods to
situations with restricted computational resources. However,
even more importantly, it has been shown that the general-
ization capacity of CNNs is directly impacted by the model
size and number of training samples (Zhou and Feng 2018).
Since it is not trivial to generate diverse optical flow training
samples (Dosovitskiy et al. 2015; Menze and Geiger 2015),

*Corresponding author
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

continuing to increase the model complexity may end up im-
pacting the generalization capabilities of future models.

One of the main reasons for the substantial increase in op-
tical flow model sizes is the adoption of more complex fea-
ture encoder networks. Some recent methods such as Flow-
Former (Huang et al. 2022), MatchFlow (Dong, Cao, and Fu
2023), and CroCo (Weinzaepfel et al. 2022) finetune Trans-
former networks with up to hundreds of millions of param-
eters. Although these models perform well when finetuned
and tested on the same datasets, their generalization capa-
bilities are less evident. For example, testing FlowFormer
without finetuning on the newer Spring benchmark (Mehl
et al. 2023) shows a significant gap in performance to other
top-performing methods.

In this paper, we go against the recent trend and propose a
smaller, more efficient optical flow model. We design a new
spatial recurrent encoder network that shares layers across
multiple scales to improve feature representation with sig-
nificantly fewer parameters. Unlike standard recurrent net-
works, we equip our encoder with a generalization of con-
volution layers, which we call Partial Kernel Convolution
(PKConv). PKConv offers two main advantages: (1) process
features with a variable number of channels with a single
shared network, and (2) allow different parts of the convo-
lution kernel to focus on features from specific levels. We
also design a Separable Large Kernel (SLK) module that ef-
ficiently captures large context information using only 1D
convolution layers to improve the model efficiency.

We incorporate our recurrent encoder into RPKNet (Re-
current Partial Kernel Network), a novel method that em-
ploys a fully recurrent encoder-decoder network to pro-
duce accurate optical flow estimations at reduced compu-
tational costs. Our spatial recurrent encoder produces multi-
scale feature pyramids and then iteratively refines the op-
tical flow prediction. We conduct extensive tests on public
benchmarks and demonstrate that our method achieves top-
performing generalization results while requiring a fraction
of the parameters and computational cost of other state-of-
the-art methods (Figure 1).

Our contributions can be summarized as three-folded:

1. We propose a spatial recurrent encoder with Partial Ker-
nel Convolution (PKConv) layers that can efficiently ex-
tract discriminative multi-scale features with a single
shared block.

Figure 1: Generalization results on the Spring (Mehl et al. 2023) dataset. Left: We achieve the lowest error with the fewest
FLOPs and model parameters (represented by the blob sizes) without using samples from Spring to train. Right: Our model
leverages large contexts to produce consistent optical flow estimations on large (1080p) images.

2. We design a compact Separable Large Kernel (SLK)
module that only relies on 1D large convolutions to en-
code more contextual information.

3. We demonstrate that our model achieves strong general-
ization results with the lowest number of parameters and
computational cost among all comparable models.

Methodology
Optical Flow Estimation
Given a pair of consecutive images Ii∈{1,2} ∈ Rh×w×c0

from a video, the optical flow estimation problem consists
of finding a dense set of 2D motion vectors F ∈ Rh×w×2

that represents how each pixel moves from I1 to I2, where
(h,w, c0) is the height, width, and number of input chan-
nels of the image. This is typically done using an encoder-
decoder deep network structure where the encoder extracts
single- or multi-scale feature maps Xs,i, where s represents
the scale index. The decoder processes the feature maps to
generate the output flow F .

We propose a new spatial recurrent encoder that lever-
ages our proposed PKConv and SLK layers to extract multi-
scale features of variable sizes at a reduced cost. Unlike
most current models that decode a single high-resolution
feature map (Teed and Deng 2020), we build a traditional
feature pyramid with multi-scale features to estimate opti-
cal flow in a coarse-to-fine approach. We improve the RAFT
decoder (Teed and Deng 2020) with a context fusion layer
to handle feature pyramids efficiently and incorporate SLK
GRU modules, which we show to bring a noticeable im-
provement without increasing the computational cost. Fig-
ure 2 shows a diagram of our method, and we provide more
details about its components in the following sections.

Spatial Recurrent Encoder
Given an input X0, a typical (non-recurrent) encoder ex-
tracts multi-scale features Xs>0 ∈ Rhs×ws×cs by apply-
ing a series of layer blocks Xs = ϕs(Xs−1) (e.g., ϕ rep-
resents a residual block in ResNets (He et al. 2016a)). To
save computation and increase the receptive field, each fea-
ture scale usually maintains the following properties: hs =

hs−1

2 , ws =
ws−1

2 , cs > cs−1.
Weight sharing is the core concept of the convolution op-

eration, and it allows the kernel to learn more representative
patterns by processing multiple views of the data. Following
the same principle, we improve the representativity of the
layer blocks by allowing them to process multiple scales.
The naı̈ve approach to implement weight sharing would be
to repeat the same layer block ϕ at all scales as:

Xs = ϕ(Xs−1) = ϕs(X0). (1)
However, this simple approach has some drawbacks. First,
since the same ϕ is applied at every scale, all features would
have the same number of channels. Depending on the cho-
sen cs, this imposes a high computational cost on shal-
lower, larger features or reduces the information stored in
the deeper, smaller ones. Second, unlike in the convolution
operation, a shared layer block is subject to changes in scales
and semantic levels. Therefore, encoding all these changes
in a globally shared block may be unreasonable. A better
approach would be to share a part of the blocks at each
scale and have more specialized parts to focus on learning
more specific characteristics of different scale levels. Our
proposed Partial Kernel Convolution (PKConv) operation is
designed to tackle these two problems. More details about
PKConv are provided in the next section. The third prob-
lem, as evidenced by Equation 1, is that later features (with
larger s) are computed by repeatedly applying the same op-
eration, which decreases the representation diversity. Draw-
ing inspiration from RNNs, we include a ConvGRU (Ballas
et al. 2016; Cho et al. 2014) to modulate the information
flow and encourage each scale level to focus on different
parts of the data. Our spatial encoder can then be defined in
two steps:

Hs = ConvGRU(Hs−1, Xs−1),

Xs = ϕ(Hs).
(2)

The ConvGRU follows the standard definition:
Rs = σ(ϕ([Hs−1, Xs−1])),

Zs = σ(ϕ([Hs−1, Xs−1])),

Ns = tanh(ϕ([Rs ⊙Hs−1, Xs−1])),

Hs = (1− Zs)⊙Ns + Zs ⊙Hs−1,

(3)

(a) (b) (c)

Figure 2: Overview of our model. (a) Input images are projected into feature space Z by a convolution stem and then converted
into multi-scale featuresX by our proposed spatial recurrent encoder. (b) By combining PKConv layers with SLK modules, our
encoder produces discriminative features of variable sizes with a single shared block. The pyramid decoder iteratively refines
the flow estimation and uses a context fusion module (c) to transfer the hidden SLK GRU features H across pyramid levels.
Best viewed in colors.

where [·] indicates concatenation, ⊙ the Hadamard product,
and σ the sigmoid function.

A representation of our complete encoder is shown in Fig-
ure 2, and it can be described as:

Zi,1 = ϕstem(Ii),

Hi,s = ConvGRUPK(Hi,s−1, Zi,s−1),

Zi,s = ϕPK
SLK(Hi,s),

Xi,s = ϕPK
1×1(Zi,s),

(4)

where PK indicates PKConv layers, SLK is our proposed
module, ϕstem is a single convolution layer with kernel size
7 and stride 2, and the final features Xi,s are produced by a
1× 1 convolution. We set s ≥ 2 and initialize Hi,1 = 0.

Partial Kernel Convolution (PKConv)
The standard convolution operation can be defined as fol-
lows. Let X ∈ Rh×w×ci be a 2D feature map of size h×w

and ci channels, K ∈ Rco×ci×kh×kw

a 2D convolution ker-
nel of size kh×kw with co output and ci input channels. The
convolution of X(with appropriate padding) with K gener-
ates a resulting feature map Y ∈ Rh×w×co as:

Y (i, j, k) = (X ∗K)(i, j, k) =

kh−1∑
m=0

kw−1∑
n=0

ci−1∑
p=0

(X(i+ m̃, j + ñ, p)K(k, p,m, n)),

(5)

where k ≤ co and m̃, ñ indicate subtracting half of the ker-
nel size, i.e., m̃ = m− ⌊kh

2 ⌋.
To reduce the model size and improve generalization,

some models reuse the same convolution block multiple
times (Jin et al. 2023; Sim, Oh, and Kim 2021; Teed and
Deng 2020). However, the standard convolution operation

requires the input and output to always have the same pre-
defined number of channels, which hinders the ability to
handle diverse inputs. We propose to overcome this prob-
lem by employing a generalization of standard convolution
that we refer to as Partial Kernel Convolution (PKConv). In
PKConv, the convolution kernel K is treated as a buffer that
can be partially sampled according to the layer requirements.
Hence, if we have inputs and outputs X̂ ∈ Rh×w×ĉi and
Ŷ ∈ Rh×w×ĉ0 with ĉi ≤ ci and ĉo ≤ co, we define the
PKConv operation as:

Ŷ (i, j, k) = (X̂ ∗PK K)(i, j, k) =∑
m∈M̂

∑
n∈N̂

ĉi−1∑
p=0

(X̂ (i+ m̃, j + ñ, p)K(Ô(k), Î(p),m, n)),

(6)

where the bold letters indicate a set of sampling indices with
cardinalities |̂I| = ĉi, |Ô| = ĉo, |M̂| ≤ kh, and |N̂| ≤ kw.

Our RPKNet model does not selectively sample the ker-
nel size dimensions (kh, kw) and always uses the full extent.
We sample the first element for the channels until we reach
the required number for each layer. More formally, the sam-
pling sets in our PKConv encoder at scale s are as follows:
Î = (0, ..., ĉis−1), Ô = (0, ..., ĉos−1), M̂ = (0, ..., kh−1),
and N̂ = (0, ..., kw − 1), with ĉs ≥ ĉs−1. This sam-
pling strategy offers two advantages: (1) balance computa-
tional cost and information storage by increasing the chan-
nels as we decrease the spatial dimensions, and (2) allow
early weights to learn more global multi-scale patterns and
later weights to focus on the high-level features only. A vi-
sual example of the PKConv operation is shown in Figure 3.

Partial normalization Most deep networks employ fea-
ture normalization layers (Ba, Kiros, and Hinton 2016; Ioffe
and Szegedy 2015; Wu and He 2018) to improve training

(a) (b)

Figure 3: Example of multiple kernel samplings when using
PKConv. (a) The entire volume represents the full convolu-
tion kernel, and different parts are sampled according to the
feature scale. At a given scale s, the kernel will sample the
first ĉs values in the feature input and output dimensions (Y
and X axes, respectively), with ĉs+1 ≥ ĉs. b) Visual rep-
resentation of the sampled weights used at each scale level.
Weights from subset 1 are shared among all levels and learn
scale-agnostic patterns. Best viewed in colors.

and generalization. However, only some standard normaliza-
tion techniques are compatible with the PKConv operation.
In particular, strategies that normalize over all channels,
such as Layer Normalization (Ba, Kiros, and Hinton 2016),
are unsuitable since only a subset of channels may be used
each time. We also experimentally found that Batch Nor-
malization (Ioffe and Szegedy 2015) does not produce reli-
able results after PKConv layers, indicating that the channel
statistics change according to the sampling sets. Group Nor-
malization (Wu and He 2018) is compatible with PKConv
since the channel groups can be synchronized with the sam-
pling sets. Therefore, we adopt Group Normalization for
PKConv layers.

Separable Large Kernel (SLK)

Recently, models with large kernel convolution have shown
promising results in multiple applications (Ding et al. 2022a;
Guo et al. 2023; Sun et al. 2022b). We further improve the
efficiency of previous methods by utilizing only 1D large
convolutions and skip connections. A diagram of our SLK
module is shown in Figure 4. The main component of our
module is integrated into the SLK Unit, and we complement
it with residual scaling layers (Guo et al. 2023; Liu et al.
2022) and a Feed-Forward Network (Tan and Le 2021).

Skip connections It has been shown that using identity
skip connection improves information flow and the perfor-
mance of deep networks (He et al. 2016b; Veit, Wilber,
and Belongie 2016). Based on these findings, we equip our
SLK with skip connections of different lengths. In partic-
ular, we add redundant skip connections around each 1D
large convolution block. This strategy, known as structural
re-parameterization, has been shown to help the model dur-
ing the training (Ding et al. 2021, 2022a). We adopt a
similar design but simplify it by dropping the Batch Nor-
malization (Ioffe and Szegedy 2015) layers. After training,
these skip connections can be fused within the convolution
layer (Ding et al. 2021).

Figure 4: Overview of our SLK module. The main SLK Unit
block only requires 1D large kernels and 1 × 1 convolution
layers with skip connections.

Feature Pyramid Decoder
We adapt the iterative decoder from RAFT due to the suc-
cess of iterative refinement strategies for fine-grained predic-
tion tasks (Teed and Deng 2020; Zhang et al. 2023a). How-
ever, RAFT’s decoder is designed for a single feature map,
which is unsuitable for feature pyramids. Therefore, we add
a context fusion module to handle the transition between
pyramid levels. To account for the domain shift between lev-
els, we forward the GRU state through a residual block and
fuse it with more fine-grained context features from the en-
coder (Figure 2c).

Our encoder produces S = 5 level feature pyramid with
feature strides 2s. However, the decoder only processes the
smallest three levels (s ∈ {3, 4, 5}) to reduce the processing
costs. The total number of refinement iterations N is uni-
formly spread across the levels. For example, if N = 12,
we first do four refinements at the smallest resolution, move
to the next pyramid level, and proceed with the refinement.
Predictions at the original resolution are produced using a
convex upsampling layer (Teed and Deng 2020).

SLK GRU
The GRU is the main component of the decoder, as it aggre-
gates all the input features and produces a central state fea-
ture, which is used to decode the optical flow and keep the
history of previous iterations. Nonetheless, most optical flow
models adopt a single ConvGRU (Ballas et al. 2016; Teed
and Deng 2020) for this task. Unlike the original GRU (Cho
et al. 2014), which encodes global relationships via fully
connected layers, the ConvGRU extracts minimal context
with a single 3 × 3 convolution layer for each gate. We im-
prove the GRU by replacing the convolution layers with our
SLK (equivalent to replacing ϕ with ϕSLK layers in Equa-
tion 3). The resulting SLK GRU requires even fewer param-
eters than the ConvGRU and significantly boosts the estima-
tion quality.

Loss Function
Our loss function is similar to RAFT, consisting of the L1
difference between the predicted flow and the ground truth.
The main difference is that we use different upsampling

Method FLOPs Mem. Param. KITTI 2015 Sintel clean Sintel final Spring

(T) (GB) (M) train test train test train test test

Ours 1.0 2.4 2.8 13.0 4.64 1.12 1.31 2.45 2.65 4.80
PWCNet (Sun et al. 2018b) 0.7 3.8 9.3 33.7 7.72 2.55 3.45 3.93 4.60 82.26
LiteFlowNet (Hui, Tang, and Loy 2018) 1.3 3.7 5.3 29.3 10.4 2.52 4.86 4.05 6.09 -
HD3 (Yin, Darrell, and Yu 2019) 1.3 4.2 39.5 23.9 6.50 3.84 4.79 8.77 4.67 -
MaskFlowNet (Zhao et al. 2020) 1.4 3.9 20.6 23.1 6.10 2.25 2.52 3.61 4.17 -
FlowNet 2 (Ilg et al. 2017) 1.6 6.5 162.5 28.2 11.4 2.02 3.96 3.14 6.02 -
Flow1D (Xu et al. 2021) 3.2 3.2 5.7 22.9 6.27 1.98 2.23 3.27 3.80 -
RAFT (Teed and Deng 2020) 3.8 10.8 5.1 17.4 5.10 1.44 1.60 2.71 2.85 6.79
GMFlowNet (Zhao et al. 2022) 5.0 21.9 9.3 15.4 4.79 1.14 1.39 2.71 2.65 -
GMA (Jiang et al. 2021a) 7.6 18.7 5.8 17.1 5.25 1.30 1.38 2.74 2.47 7.07
DIP (Zheng et al. 2022) 7.8 5.4 5.3 13.7 4.21 1.30 1.43 2.82 2.83 -
SKFlow (Sun et al. 2022b) 7.9 18.7 6.3 15.5 4.84 1.22 1.29 2.46 2.27 -
MatchFlow (Dong, Cao, and Fu 2023) 9.9 19.1 15.4 13.6 4.72 1.14 1.33 2.61 2.64 -

Table 1: Results with the official metrics on KITTI 2015 (Fl-All), MPI-Sintel (EPE), and Spring (1px) datasets. Train results are
collected from models without finetuning, while test results come from the official benchmarks. The best results are highlighted
in bold, while the second best are underlined. Memory and FLOP results are based on an input of (1920 × 1080) using each
method’s default number of iterations.

functions ψs for each pyramid level s. At the largest decod-
ing pyramid level (s = 3), we use convex upsampling (Teed
and Deng 2020), while the remaining level (s > 3) adopt
a simple bilinear upsampling. If we let Nl = ⌈N

3 ⌉ be the
number of iterations per feature level, we can define the loss
as:

L =

3∑
s=5

Nl−1∑
j=0

γN−(5−s)Nl−j−1∥Fgt − ψs(Fs,j)∥1, (7)

where γ < 1 is a scalar to give less importance to early
iterations.

Experimental Results
Implementation Details
We follow the same training routine as RAFT (Teed and
Deng 2020), using the AdamW optimizer (Loshchilov and
Hutter 2019) combined with the OneCycle learning rate
schedule (Smith and Topin 2019). We use the extended train-
ing (Sun et al. 2022a; Xu et al. 2022) with 100k iterations
on the FlyingChairs dataset (Dosovitskiy et al. 2015) fol-
lowed by 1M iterations on the FlyingThings3D (Mayer et al.
2016). For the Sintel (Butler et al. 2012) and Spring (Mehl
et al. 2023) benchmarks, we use 250k iterations to finetune
the model in a mixed dataset combining FlyingThings3D,
KITTI (Geiger, Lenz, and Urtasun 2012; Menze and Geiger
2015), HD1K (Kondermann et al. 2016), and Sintel sam-
ples. For KITTI, we start from the Sintel model and further
finetune it in the KITTI 2015 dataset for 5k iterations. We
use 12 refinement iterations for training and ablation exper-
iments and 32 for the public benchmark evaluation. Each
model is trained once using 1234 as the random seed on two
NVIDIA RTX3090 GPUs. We calculate FLOPs using the
PyTorch profiler.

Comparison With the State-of-the-Art
Table 1 shows how our results compare to the state-of-the-
art. We compare our approach with recent models using up
to ten times more FLOPs than ours.

Cross-dataset generalization on train sets We test our
model generalization by evaluating it on the train sets from
Sintel and KITTI 2015 after training on the FlyingThings3D
dataset. Table 1 shows that our method outperforms all other
methods on the train sets while having the smallest size and
computational costs. These results indicate that larger mod-
els do not necessarily find better general patterns on the lim-
ited amount of training optical flow samples, further sup-
porting the impact of model size on generalization perfor-
mance (Zhou and Feng 2018). Even MatchFlow, which uses
almost ten times more FLOPs, five times more parameters,
and additional pretraining from the MegaDepth dataset (Li
and Snavely 2018), still is outperformed by our method.

Cross-dataset generalization on the Spring test set
Spring is a suitable benchmark for generalization tests since
it provides high-resolution 1080p samples with 4K optical
flow annotations, substantially different from other datasets
used for training. To be fair to the current submissions,
we do not finetune our model on samples from the Spring
dataset; instead, we use the same model finetuned for the
Sintel dataset. Our model ranks first among published meth-
ods without finetuning in the official benchmark and outper-
forms other very large models, such as MS-RAFT+ (Jahedi
et al. 2022) and FlowFormer (Huang et al. 2022) (see Fig-
ure 1). Remarkably, our model has over five times fewer pa-
rameters and uses at least 15× fewer FLOPs than those two
models, further highlighting our generalization capability.

Finetuning test Following previous works, we finetuned
our model on the Sintel and KITTI 2015 datasets and

Method FLOP Param. KITTI Sintel
2015 clean final

Ours 1.0 2.8 13.0 1.12 2.45

RAFT 3.8 5.1 17.4 1.44 2.71
FlowFormer-S 14.2 6.1 16.6 1.20 2.64
FlowFormer 17.2 16.0 14.7 0.95 2.35

Table 2: Comparison of generalization results of our method
against other model reduction approaches.

Figure 5: Sample qualitative results on the tested datasets.
Best viewed in colors.

submitted our results to the official benchmarks. We also
achieve strong performance on finetuning, outperforming
most larger comparable models. On KITTI 2015, our model
outperforms almost all other methods except for DIP. On the
MPI-Sintel benchmark, other larger methods, such as SK-
Flow, show a more significant advantage. We believe this is
caused by the extensive finetuning that most models use for
this benchmark, which may contribute to larger models to fit
a more specialized distribution for this task.

Model efficiency We compare the models by calculating
their memory consumption, FLOPs count, and speed on
large 1080p images (Spring size). Table 1 shows that our
model has the lowest parameter count and memory con-
sumption among all compared methods. It also requires at
least three times fewer FLOPs than other top-performing
methods. While methods like PWCNet use even fewer oper-
ations, our results are significantly more accurate than those.
We also check the inference time for some models, with ours
taking around 580 ms, offering a good compromise between
RAFT1 (890 ms) and Flow1D (375 ms).

Model Reduction Evaluation
Our model can be interpreted as a reduced version of
RAFT (Teed and Deng 2020). Table 2 shows that, despite

1With the memory-efficient alternate correlation layer

Experiment Method Sintel KITTI
clean final 2015

Encoder ResNet 1.40 2.68 5.40
PKConv 1.28 2.60 4.23

Decoder

2 ConvGRU 1.39 2.73 5.81
2 SLK 1.35 2.68 4.55
1 SLKGRU 1.35 2.61 4.68
2 SLKGRU 1.28 2.60 4.23

Kernel size

3 1.39 2.67 4.88
7 1.29 2.62 4.70
15 1.34 2.64 4.48
23 1.28 2.60 4.23
31 1.32 2.60 4.81

Re-param. No 1.32 2.58 4.58
Yes 1.28 2.60 4.23

Feat/Ctxt net Individual 1.34 2.64 4.48
Joint 1.28 2.60 4.23

Table 3: Ablation results (EPE) of the different modules. The
underline indicates the option adopted by our model.

being smaller, our model outperforms RAFT in all tests.
FlowFormer (Huang et al. 2022) also presented a reduced
FlowFormer-S version, which still requires fourteen times
more FLOPs than ours and is outperformed in all datasets.
These results further demonstrate the advantages of our pro-
posed efficient architecture for reducing computational costs
without impacting performance.

Qualitative Results
We qualitatively compare our model against the RAFT base-
line and the large attention model FlowFormer in Figure 5.
As the Sintel example shows, the large kernels of our SLK
can capture long-range context to enforce consistency be-
tween disconnected regions. FlowFormer can also lever-
age its global attention with a similar effect, but our ap-
proach has a much lower computational cost. Our model
also preserves fine details and produces accurate estimations
for smaller objects, outperforming the competing methods
in many cases. On the other hand, the larger FlowFormer
structure still generally produces slightly sharper results and
shows more robustness to adverse image conditions, espe-
cially on the Sintel dataset.

Ablation Study
We conduct ablation studies about the different modules we
propose in our method. Table 3 shows the results using a
training schedule of 250k iterations on the FlyingThings3D
dataset. More details are provided below.

PKConv encoder We compare our encoder against a
similarly-sized ResNet (He et al. 2016a). Our recurrent en-
coder with PKConv layers and SLK blocks shows a notice-
able improvement in all benchmarks.

Decoder unit We check how our SLK blocks compare to
the commonly used ConvGRU (Ballas et al. 2016; Teed and
Deng 2020). Similar to SKFlow (Sun et al. 2022b), replac-
ing the ConvGRUs with our SLK module (without GRU) al-
ready brings a noticeable improvement to the results. How-
ever, using SLK GRUs improves the results even further,
demonstrating the benefits of GRUs for iterative tasks.

Kernel size We experiment with 1D kernels of different
sizes for the SLK module. Our SLK module structure is ro-
bust; even a small kernel provides competitive results. How-
ever, increasing the size of the kernel improves the results,
achieving the best performance with a kernel size of 23.

Re-parameterization We use structural re-
parameterization by adding skip connections around
our 1D convolution layers. The results show that this
strategy benefits our model and improves the training.

Joint encoder Our model replaces the traditional dual en-
coder design (Teed and Deng 2020) with a single joint en-
coder. Our results show that the joint design improves esti-
mation quality.

Related Works
Optical Flow
FlowNet (Dosovitskiy et al. 2015), especially FlowNet2 (Ilg
et al. 2017), set a new standard using deep networks to es-
timate optical flow. Early deep models for optical flow es-
timation were primarily based on the traditional coarse-to-
fine strategy and employed feature pyramids to gradually
refine the estimation (Hofinger et al. 2020; Hui, Tang, and
Loy 2018; Ranjan and Black 2017; Sun et al. 2018b). Later,
RAFT (Teed and Deng 2020) proposed to remove the pyra-
mid and work with a single high-resolution feature map, cre-
ating a new standard for optical flow models. Multiple ad-
vances have been proposed since then to improve the cost
volume representation (Xiao et al. 2020; Zhang et al. 2021),
leverage temporal cues (Chen et al. 2023; Ferede and Bal-
asubramanian 2023; Lu et al. 2023; Shi et al. 2023a), and
improve features (Dong, Cao, and Fu 2023; Luo et al. 2022;
Shi et al. 2023b; Sui et al. 2022). These improvements, how-
ever, also contributed to an increase in the computational
cost of the models. Some recent works (Jiang et al. 2021b;
Kong, Shen, and Yang 2021; Xu et al. 2021; Zheng et al.
2022) have been focusing on decreasing the cost of optical
flow models, but they impose a noticeable drop in accuracy
or running speed.

Recurrent Models for Optical Flow
Current optical flow models often use a recurrent decoder.
IRR (Hur and Roth 2019) first used a recurrent CNN
decoder, while most current models (Huang et al. 2022;
Jiang et al. 2021a; Zheng et al. 2022) uses a GRU-based
block (Teed and Deng 2020) to refine the prediction iter-
atively. Recurrent units have been adopted in encoders as
well in the temporal dimension to handle multiple frames of
videos (Ding et al. 2022b; Lu et al. 2023). However, recur-
rent encoders in the spatial dimension have yet to be well-
explored for optical flow. Some works adopted it for video

interpolation to generate multi-scale features, but that re-
quired either producing features of a fixed size (Sim, Oh,
and Kim 2021) or treating the entire optical flow network
as a recurrent unit (Jin et al. 2023; Zhang, Zhao, and Wang
2020), which decreases the flexibility of the model.

Large Context Networks
Considering large contexts is often beneficial to optical
flow estimation. Dilated convolution (Sun et al. 2018a) has
been proposed to capture more long-range relationships.
More recently, it has become standard to add attention lay-
ers (Vaswani et al. 2017) to improve feature representa-
tion (Du et al. 2022; Sui et al. 2022; Xu et al. 2021, 2022;
Zhao et al. 2022; Zheng et al. 2023), but this increases the
computational cost significantly. More recently, works in
other fields have shown that large kernel convolution can
outperform Transformer models at a lower computational
cost (Ding et al. 2022a; Guo et al. 2022). SKFlow (Sun et al.
2022b) has also shown that large convolution layers pro-
duce state-of-the-art optical flow estimation results. How-
ever, SKFlow is built on top of GMA (Jiang et al. 2021a), a
global attention model, and thus still imposes a high compu-
tational cost.

Convolution Operations
Variations of convolution and channel manipulation opera-
tions have been proposed before for different purposes. Par-
tial Convolution (Liu et al. 2018) was proposed as an alter-
native to feature padding to ignore some parts of the kernel
by masking the areas out of the image boundaries. However,
it ignored changes in the number of channels and increased
the convolution costs by calculating masks. Sparse Convo-
lution (Engelcke et al. 2016) can also select parts of the ker-
nel. However, the kernel sampling is guided by the sparsity
of the 3D cloud point inputs to save computation in empty
areas. This is a different motivation than our PKConv, where
each part of the kernel encodes different types of informa-
tion. Convolution with adaptable kernels has been explored
to handle more diverse features (Jia et al. 2016; Zhang et al.
2023b), but these methods require complementary networks
to generate the kernels.

Discussion
We have proposed RPKNet, an efficient optical flow model
that leverages recurrent Partial Kernel Convolution layers
(PKConv) and Separable Large Kernels (SLK) to produce
high-quality optical flow estimation at a lower computa-
tional cost. Our model has shown outstanding generaliza-
tion capability by achieving the best performance without
finetuning, using fewer parameters and less memory than all
competing models.

Limitations It has been shown (Ding et al. 2022a) that
current software and hardware are not optimized for large
kernel operations. Also, if computational resources are not
a concern, large and more expensive methods like Flow-
Former (Huang et al. 2022) can still outperform ours on stan-
dard benchmarks.

Acknowledgments
This research is supported by the National Key Research
and Development Program of China (2020AAA0109700),
the Beijing Natural Science Foundation (IS23060), the Fun-
damental Research Funds for the Central Universities (FRF-
TP-22-048A1), the National Science Fund for Distinguished
Young Scholars(62125601), and the National Natural Sci-
ence Foundation of China (62076024, 62172035).

References
Ba, J.; Kiros, J. R.; and Hinton, G. E. 2016. Layer Normal-
ization. ArXiv.
Ballas, N.; Yao, L.; Pal, C. J.; and Courville, A. C. 2016.
Delving Deeper into Convolutional Networks for Learning
Video Representations. In ICLR.
Butler, D. J.; Wulff, J.; Stanley, G. B.; and Black, M. J. 2012.
A naturalistic open source movie for optical flow evaluation.
In ECCV, 611–625.
Chen, Y.; Zhu, D.; Shi, W.; Zhang, G.; Zhang, T.; Zhang, X.;
and Li, J. 2023. MFCFlow: A Motion Feature Compensated
Multi-Frame Recurrent Network for Optical Flow Estima-
tion. In WACV, 5057–5066.
Cho, K.; van Merrienboer, B.; Çaglar Gülçehre; Bahdanau,
D.; Bougares, F.; Schwenk, H.; and Bengio, Y. 2014. Learn-
ing Phrase Representations using RNN Encoder–Decoder
for Statistical Machine Translation. In EMNLP, 1724–1734.
Ding, X.; Zhang, X.; Ma, N.; Han, J.; Ding, G.; and Sun, J.
2021. RepVGG: Making VGG-style ConvNets Great Again.
In CVPR, 13728–13737.
Ding, X.; Zhang, X.; Zhou, Y.; Han, J.; Ding, G.; and Sun, J.
2022a. Scaling Up Your Kernels to 31×31: Revisiting Large
Kernel Design in CNNs. In CVPR, 11953–11965.
Ding, Z.; Zhao, R.; Zhang, J.; Gao, T.; Xiong, R.; Yu, Z.; and
Huang, T. 2022b. Spatio-Temporal Recurrent Networks for
Event-Based Optical Flow Estimation. In AAAI, 525–533.
Dong, Q.; Cao, C.; and Fu, Y. 2023. Rethinking Optical
Flow from Geometric Matching Consistent Perspective. In
CVPR, 1337–1347.
Dosovitskiy, A.; Fischer, P.; Ilg, E.; Hausser, P.; Hazirbas,
C.; Golkov, V.; Van Der Smagt, P.; Cremers, D.; and Brox,
T. 2015. FlowNet: learning optical flow with convolutional
networks. In ICCV, 2758–2766.
Du, Y.; Chen, Z.; Jia, C.; Yin, X.; Zheng, T.; Li, C.; Du, Y.;
and Jiang, Y.-G. 2022. SVTR: Scene Text Recognition with
a Single Visual Model. In IJCAI, 884–890.
Engelcke, M.; Rao, D.; Wang, D. Z.; Tong, C. H.; and Pos-
ner, I. 2016. Vote3Deep: Fast object detection in 3D point
clouds using efficient convolutional neural networks. In
ICRA, 1355–1361.
Ferede, F. A.; and Balasubramanian, M. 2023. SSTM: Spa-
tiotemporal Recurrent Transformers for Multi-frame Optical
Flow Estimation. ArXiv.
Geiger, A.; Lenz, P.; and Urtasun, R. 2012. Are we ready for
Autonomous Driving? The KITTI Vision Benchmark Suite.
In CVPR, 3354–3361.

Guo, M.-H.; Lu, C.; Hou, Q.; Liu, Z.; Cheng, M.-M.; and
Hu, S. 2022. SegNeXt: Rethinking Convolutional Attention
Design for Semantic Segmentation. In NeurIPS.
Guo, M.-H.; Lu, C.-Z.; Liu, Z.-N.; Cheng, M.-M.; and Hu,
S.-M. 2023. Visual Attention Network. Computational Vi-
sual Media, 9(4).
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016a. Deep Resid-
ual Learning for Image Recognition. CVPR, 770–778.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016b. Identity map-
pings in deep residual networks. In ECCV, 630–645.
Hofinger, M.; Bulò, S. R.; Porzi, L.; Knapitsch, A.; and
Kontschieder, P. 2020. Improving optical flow on a pyra-
midal level. In ECCV, 770–786.
Huang, Z.; Shi, X.; Zhang, C.; Wang, Q.; Cheung, K. C.;
Qin, H.; Dai, J.; and Li, H. 2022. FlowFormer: A Trans-
former Architecture for Optical Flow. In ECCV, 668–685.
Hui, T.-W.; Tang, X.; and Loy, C. C. 2018. LiteFlowNet:
a lightweight convolutional neural network for optical flow
estimation. In CVPR, 8981–8989.
Hur, J.; and Roth, S. 2019. Iterative residual refinement for
joint optical flow and occlusion estimation. In CVPR, 5754–
5763.
Ilg, E.; Mayer, N.; Saikia, T.; Keuper, M.; Dosovitskiy, A.;
and Brox, T. 2017. FlowNet 2.0: evolution of optical flow
estimation with deep networks. In CVPR, volume 2, 2462–
2470.
Ioffe, S.; and Szegedy, C. 2015. Batch Normalization: Ac-
celerating Deep Network Training by Reducing Internal Co-
variate Shift. In ICML, 448–456.
Jahedi, A.; Mehl, L.; Rivinius, M.; and Bruhn, A. 2022.
Multi-Scale RAFT: Combining Hierarchical Concepts for
Learning-based Optical Flow Estimation. In ICIP, 1236–
1240.
Jia, X.; Brabandere, B. D.; Tuytelaars, T.; and Gool, L. V.
2016. Dynamic Filter Networks. In NeurIPS, 667–675.
Jiang, S.; Campbell, D.; Lu, Y.; Li, H.; and Hartley, R.
2021a. Learning to Estimate Hidden Motions with Global
Motion Aggregation. In ICCV, 9752–9761.
Jiang, S.; Lu, Y.; Li, H.; and Hartley, R. 2021b. Learning
Optical Flow From a Few Matches. In CVPR, 16592–16600.
Jin, X.; Wu, L.; Shen, G.; Chen, Y.; Chen, J.; Koo, J.; and hee
Hahm, C. 2023. Enhanced Bi-directional Motion Estimation
for Video Frame Interpolation. In WACV, 5038–5046.
Kondermann, D.; Nair, R.; Honauer, K.; Krispin, K.; An-
drulis, J.; Brock, A.; Gussefeld, B.; Rahimimoghaddam, M.;
Hofmann, S.; Brenner, C.; et al. 2016. The HCI Benchmark
Suite: Stereo and Flow Ground Truth With Uncertainties for
Urban Autonomous Driving. In CVPR Workshops, 19–28.
Kong, L.; Shen, C.; and Yang, J. 2021. FastFlowNet: A
Lightweight Network for Fast Optical Flow Estimation. In
ICRA.
Li, Z.; and Snavely, N. 2018. MegaDepth: Learning Single-
View Depth Prediction from Internet Photos. In CVPR,
2041–2050.

Liu, G.; Reda, F. A.; Shih, K. J.; Wang, T.-C.; Tao, A.; and
Catanzaro, B. 2018. Image Inpainting for Irregular Holes
Using Partial Convolutions. In ECCV, 89–105.
Liu, Z.; Mao, H.; Wu, C.-Y.; Feichtenhofer, C.; Darrell, T.;
and Xie, S. 2022. A ConvNet for the 2020s. In CVPR,
11966–11976.
Loshchilov, I.; and Hutter, F. 2019. Decoupled Weight De-
cay Regularization. In ICLR.
Lu, Y.; Wang, Q.; Ma, S.; Geng, T.; Chen, V. Y.; Chen, H.;
and Liu, D. 2023. TransFlow: Transformer as Flow Learner.
In CVPR, 18063–18073.
Luo, A.; Yang, F.; Li, X.; and Liu, S. 2022. Learning Optical
Flow with Kernel Patch Attention. In CVPR, 8896–8905.
Mayer, N.; Ilg, E.; Häusser, P.; Fischer, P.; Cremers, D.;
Dosovitskiy, A.; and Brox, T. 2016. A Large Dataset to
Train Convolutional Networks for Disparity, Optical Flow,
and Scene Flow Estimation. In CVPR, 4040–4048.
Mehl, L.; Schmalfuss, J.; Jahedi, A.; Nalivayko, Y.; and
Bruhn, A. 2023. Spring: A High-Resolution High-Detail
Dataset and Benchmark for Scene Flow, Optical Flow and
Stereo. In CVPR, 4981–4991.
Menze, M.; and Geiger, A. 2015. Object scene flow for au-
tonomous vehicles. In CVPR, 3061–3070.
Ranjan, A.; and Black, M. J. 2017. Optical flow estimation
using a spatial pyramid network. In CVPR, 4161–4170.
Shi, X.; Huang, Z.; Bian, W.; Li, D.; Zhang, M.; Cheung,
K. C.; See, S.; Qin, H.; Dai, J.; and Li, H. 2023a. Vide-
oFlow: Exploiting Temporal Cues for Multi-frame Optical
Flow Estimation. In ICCV, 12469–12480.
Shi, X.; Huang, Z.; Li, D.; Zhang, M.; Cheung, K. C.; See,
S.; Qin, H.; Dai, J.; and Li, H. 2023b. FlowFormer++:
Masked Cost Volume Autoencoding for Pretraining Optical
Flow Estimation. In CVPR, 1599–1610.
Sim, H.; Oh, J.; and Kim, M. 2021. XVFI: eXtreme Video
Frame Interpolation. In ICCV, 14469–14478.
Smith, L. N.; and Topin, N. 2019. Super-convergence: very
fast training of neural networks using large learning rates. In
Defense + Commercial Sensing.
Sui, X.; Li, S.; Geng, X.; Wu, Y.; Xu, X.; Liu, Y.; Goh, R.
S. M.; and Zhu, H. 2022. CRAFT: Cross-Attentional Flow
Transformer for Robust Optical Flow. In CVPR, 17581–
17590.
Sun, D.; Herrmann, C.; Reda, F.; Rubinstein, M.; Fleet, D. J.;
and Freeman, W. T. 2022a. Disentangling Architecture and
Training for Optical Flow. In ECCV, 165–182.
Sun, D.; Yang, X.; Liu, M.-Y.; and Kautz, J. 2018a. Mod-
els matter, so does training: an empirical study of CNNs for
optical flow estimation. TPAMI, 42(6): 1408–1423.
Sun, D.; Yang, X.; Liu, M.-Y.; and Kautz, J. 2018b. PWC-
Net: CNNs for optical flow using pyramid, warping, and cost
volume. In CVPR, 8934–8943.
Sun, S.; Chen, Y.; Zhu, Y.; Guo, G.; and Li, G. 2022b.
SKFlow: Learning Optical Flow with Super Kernels. In
NeurIPS.

Tan, M.; and Le, Q. V. 2021. EfficientNetv2: smaller models
and faster training. In ICML.
Teed, Z.; and Deng, J. 2020. RAFT: recurrent all-pairs field
transforms for optical flow. In ECCV, 402–419.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, L.; and Polosukhin, I. 2017. At-
tention Is All You Need. In NeurIPS, 6000–6010.
Veit, A.; Wilber, M. J.; and Belongie, S. J. 2016. Resid-
ual Networks Behave Like Ensembles of Relatively Shallow
Networks. In NeurIPS.
Weinzaepfel, P.; Arora, V.; Cabon, Y.; Lucas, T.; Brégier,
R.; Leroy, V.; Csurka, G.; Antsfeld, L.; Chidlovskii, B.; and
Revaud, J. 2022. Improved Cross-view Completion Pre-
training for Stereo Matching. ArXiv.
Wu, Y.; and He, K. 2018. Group normalization. In ECCV,
1–17.
Xiao, T.; Yuan, J.; Sun, D.; Wang, Q.; Zhang, X.; Xu, K.;
and Yang, M.-H. 2020. Learnable Cost Volume Using the
Cayley Representation. In ECCV, 483–499.
Xu, H.; Yang, J.; Cai, J.; Zhang, J.; and Tong, X. 2021. High-
Resolution Optical Flow from 1D Attention and Correlation.
In ICCV, 10478–10487.
Xu, H.; Zhang, J.; Cai, J.; Rezatofighi, H.; and Tao, D. 2022.
GMFlow: Learning Optical Flow via Global Matching. In
CVPR, 8121–8130.
Yin, Z.; Darrell, T.; and Yu, F. 2019. Hierarchical Discrete
Distribution Decomposition for Match Density Estimation.
In CVPR, 6037–6046.
Zhang, F.; Woodford, O. J.; Prisacariu, V. A.; and Torr, P.
H. S. 2021. Separable Flow: Learning Motion Cost Volumes
for Optical Flow Estimation. In ICCV, 10787–10797.
Zhang, H.; Zhao, Y.; and Wang, R. 2020. A Flexible Recur-
rent Residual Pyramid Network for Video Frame Interpola-
tion. In ECCV, 474–491.
Zhang, S.-X.; Zhu, X.; Chen, L.; Hou, J.-B.; and Yin, X.-
C. 2023a. Arbitrary Shape Text Detection via Segmentation
With Probability Maps. TPAMI, 45: 2736–2750.
Zhang, S.-X.; Zhu, X.; Hou, J.-B.; Yang, C.; and Yin, X.-
C. 2023b. Kernel Proposal Network for Arbitrary Shape
Text Detection. IEEE Transactions on Neural Networks and
Learning Systems, 34: 8731–8742.
Zhao, S.; Sheng, Y.; Dong, Y.; Chang, E. I.; Xu, Y.; et al.
2020. MaskFlownet: asymmetric feature matching with
learnable occlusion mask. In CVPR, 6277–6286.
Zhao, S.; Zhao, L.; Zhang, Z.; Zhou, E.; and Metaxas, D. N.
2022. Global Matching with Overlapping Attention for Op-
tical Flow Estimation. In CVPR, 17571–17580.
Zheng, T.; Chen, Z.; Fang, S.; Xie, H.; and Jiang, Y.-G. 2023.
CDistNet: Perceiving Multi-Domain Character Distance for
Robust Text Recognition. IJCV, 1–19.
Zheng, Z.; Nie, N.; Ling, Z.; Xiong, P.; Liu, J.; Wang, H.;
and Li, J. 2022. DIP: Deep Inverse Patchmatch for High-
Resolution Optical Flow. In CVPR, 8915–8924.
Zhou, P.; and Feng, J. 2018. Understanding Generalization
and Optimization Performance of Deep CNNs. In ICML.

