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Abstract— Extracting motion information from videos with
optical flow estimation is vital in multiple practical robot
applications. Current optical flow approaches show remarkable
accuracy, but top-performing methods have high computational
costs and are unsuitable for embedded devices. Although
some previous works have focused on developing low-cost
optical flow strategies, their estimation quality has a noticeable
gap with more robust methods. In this paper, we develop
a novel method to efficiently estimate high-quality optical
flow in embedded devices. Our proposed RAPIDFlow model
combines efficient NeXt1D convolution blocks with a fully
recurrent structure based on feature pyramids to decrease
computational costs without significantly impacting estimation
accuracy. The adaptable recurrent encoder produces multi-scale
features with a single shared block, which allows us to adjust
the pyramid length at inference time and make it more robust
to changes in input size. Also, it enables our model to offer
multiple tradeoffs between accuracy and speed to suit different
applications. Experiments using a Jetson Orin NX embedded
system on the MPI-Sintel and KITTI public benchmarks
show that RAPIDFlow outperforms previous approaches by
significant margins at faster speeds. Our code is available
at https://github.com/hmorimitsu/ptlflow/tree/
main/ptlflow/models/rapidflow.

I. INTRODUCTION

Optical flow estimation aims to compute the per-pixel
2D motion between two consecutive video frames. It is a
fundamental task that benefits various applications, such as
action recognition [1], autonomous navigation [2], object
discovery [3], segmentation [4], and 3D reconstruction [5].

Optical flow methods have greatly benefited from the rise
of deep learning, and current approaches achieve remark-
able performance improvements. Nonetheless, optical flow
estimation is a dense prediction task and usually requires
processing high-resolution inputs to produce accurate re-
sults. More reliable optical flow methods usually have a
very high computational cost, which makes them unsuitable
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Fig. 1. Generalization results on KITTI 2015 train set vs. inference time.
RAPIDFlow shows significantly lower estimation errors in less time. In par-
ticular, we outperform FastFlowNet [6] at similar speeds and compete with
RAFT [10] while being almost three times faster. The speed is measured
on a Jetson Orin embedded system. ”res” denotes the maximum feature
resolution, and ”it” is the number of refinement iterations. FastFlowNet is
tested at res ∈ {1/16, 1/8, 1/4}. Other iterative methods, such as RAFT,
use res 1/8 and it ∈ {3, 6, 12}. All methods were tested with FP16 precision.

for deploying in embedded devices such as mobile robots.
While some previous works have focused on producing more
efficient optical flow methods for applications with restricted
resources, they usually significantly impact the estimation
quality. For example, FastFlowNet [6] significantly decreased
the computational cost of PWCNet [7] to run on embedded
devices. PatchFlow [8] proposed a two-stage approach where
large inputs are divided into smaller patches to reduce the
processing costs, making it more efficient than FastFlowNet,
but at the cost of decreased accuracy. DIFT [9] explored
ways of optimizing the widely adopted RAFT [10] method to
mobile phones. Although these methods showed remarkable
processing and speed improvements, their accuracy is not on
par with more robust methods.

This paper proposes a new, efficient optical flow esti-
mation method suitable for embedded devices. We design
an iterative and fully recurrent encoder-decoder structure
that allows us to offer multiple tradeoffs between speed
and accuracy by dynamically changing the feature sizes and
number of refinement iterations. Our recurrent encoder can
also easily handle inputs of much larger sizes by changing
the number of pyramid levels during inference, which makes
it significantly more robust to input size changes than other
competing methods. We combine the classical coarse-to-
fine approach based on feature pyramids [7] with iterative
refinement decoding [10] to produce accurate results with



Fig. 2. An overview of RAPIDFlow’s structure. A stem convolution block first projects the input images into the feature space. Our recurrent encoder then
produces multi-scale feature pyramids by sharing the same encoder block across all scales. The decoder processes the feature pyramids in a coarse-to-fine
approach to iteratively refine the flow estimation. The Gated Upsample module allows us to integrate more fine-grained contextual information and transfer
the recurrent state across different pyramid levels.

reduced computational cost. We call the proposed method
RAPIDFlow (Recurrent Adaptable Pyramids with Iterative
Decoding) and deploy it on an NVIDIA Jetson Orin NX
16GB embedded system. All reported performance results
throughout this paper are collected by running experiments
on this embedded device. The results in Fig. 1 show that our
method can be configured to be as fast as FastFlowNet [6]
or competitive to RAFT [10].

In summary, our contributions are as follows:
1) We propose a new fully recurrent encoder-decoder

structure that can be dynamically changed to produce
state-of-the-art results at various tradeoffs between
accuracy and inference speed.

2) We propose a novel recurrent feature encoder that
uses a single shared block with efficient 1D layers
(NeXt1D) to generate feature pyramids of variable
levels, which makes our model more robust to changes
in input size.

3) We propose an efficient recurrent decoder with
NeXt1D layers that refines variable feature pyramids
iteratively and produces precise optical flow while
significantly reducing parameters and memory cost.

II. RELATED WORKS

A. Optical flow

FlowNet [11] was one of the first deep optical flow models.
It adopted a simple encoder-decoder structure with multi-
level flow prediction to improve robustness and signal prop-
agation. The introduction of the correlation volume [7], [12]
in optical flow models brought a significant improvement in
the quality and efficiency of flow models. To reduce the cost
of dense matching, HD3 [13] proposed a hierarchical multi-
scale approach to efficiently cover a wide matching search
area. RAFT [10] proposed to change the feature pyramid
design and use a single high-resolution feature map instead.
This approach, combined with a global correlation volume

to improve the matching in the high-resolution space, set
a new standard for optical flow performance. Since then,
multiple methods have adopted and improved this design.
GMA [14] and SeparableFlow [15] improved the prediction
for challenging regions by aggregating motion information.
OCTC [16] added occlusion and transformation consistency
into the training to improve the model’s overall robustness.
More recently, deep network methods started to add attention
layers [17], [18], [19], [20], [21], [22] to include more
contextual information into the model. Although these meth-
ods show remarkable estimation accuracy, they also impose
outstanding computation requirements, which makes them
unsuitable for applications with restricted resources.

B. Efficient models

Some recent works have focused on improving the ef-
ficiency of optical flow models by reducing their memory
and processing requirements. FastFlowNet [6] decreased the
encoder complexity by using simple pooling operations to
create feature pyramids. Combining this encoder with a
sparse correlation layer made it competitive to PWCNet [7]
while running faster on embedded devices. However, their
best results are still not on par with more current methods,
such as RAFT [10]. Flow1D [23] vastly decreased RAFT’s
memory consumption by using only 1D correlation layers
with attention, but this caused a noticeable decrease in
estimation quality. SCM [24] and DIP [25] also tackled the
memory problem with sparse and PatchMatch [26] strategies
to decrease the search space. Nonetheless, they have high
processing costs and impact the running speed significantly.
DIFT [9] had explored optimization strategies to adapt RAFT
for mobile phones. Although they showed remarkable speed
improvements, the estimation quality was significantly im-
pacted by the reduction of the model.



Fig. 3. Overview of the NeXt1D layer. We decrease learnable parameters by
using only 1D depthwise convolution layers and fuse them during inference
time to increase the model speed.

III. METHOD

A. Problem formulation

Optical flow estimation can be seen as a matching prob-
lem. It aims to find a 2D correspondence (flow) map F ∈
RH×W×2 between two images I1 and I2, where H and W
respectively represent the height and width of the image.
The introduced RAPIDFlow model architecture is based on
RAFT [10], but we propose several improvements to de-
crease its computational cost without significantly impacting
accuracy. We first replace the ResNet [27] encoder network
with our single recurrent block that is repeatedly applied
to generate multi-scale features. The main component of
our encoder network is a module based on fused NeXt1D
convolution layers to extract relevant features with low pro-
cessing costs. We generate deep multi-scale feature pyramids
to decrease feature sizes and improve the efficiency of the
decoding step. We also leverage NeXt1D layers to fuse
context features from previous pyramid levels. By varying
the number of pyramid scales and refinement iterations, our
method can offer multiple tradeoffs between accuracy and
speed to suit various situations with a single model. The
main components of RAPIDFlow are illustrated in Fig. 2.

B. Fused 1D convolution block (NeXt1D)

The Xception network [28] showed that decomposing the
convolution operation into spatial (depthwise) and channel
layers could significantly reduce the model size while retain-
ing performance. Since then, this strategy has been further
developed [29], [30], [31] to create even more efficient
models. Although this decomposition decreases parameters
significantly, the depthwise convolution kernel parameters
still grow quadratically to the kernel size. Previous methods
have adopted the 1D decomposition [10], [23], [32] to split
the 2D kernel into 1D horizontal and vertical ones and de-
crease the parameters even more. However, although the 1D
decomposition decreases parameters, it may also impact the
model’s speed due to the need to perform two operations in
sequence. To maintain the advantages of reduced parameters
of the 1D decomposition and increase parallelism, we fuse
the 1D decomposition. Since depthwise convolution only
operates at a single channel, we can fuse the vertical and
horizontal 1D kernels wv and wh as follows:

Y = (X ∗ wv) ∗ wh = X ∗ (wv ⊗ wh), (1)

Fig. 4. The proposed recurrent encoder network. The encoder comprises
a single layer that can be iteratively unfolded to create a feature pyramid.

where ∗ denotes convolution and ⊗ the Kronecker product.
Although the resulting fused kernel has K2 elements per
channel, the number of learnable parameters is only 2K.

We build on the successful ConvNeXt [30] block design
and combine fused 1D depthwise 1×7 kernels to further re-
duce its size with a Multi-Layer Perceptron (MLP) to encode
channel relations. We call the resulting block NeXt1D. Our
experiments show that using the fused 1D kernel increases
our model speed by more than 25% compared to employing
1D decomposition directly. A diagram of the NeXt1D block
is shown in Fig 3.

C. Recurrent encoder

Most optical flow models used a fixed CNN network as
the feature encoder. This strategy has two main limitations:
(1) the number of model parameters increases according
to the network depth, and (2) the number of levels l for
the feature pyramid cannot be changed after training. The
second limitation is especially relevant since it also causes
the pyramid feature spatial size to increase according to the
input. This significantly increases the memory requirement
and hinders generalization since the feature-matching search
space changes according to the input size.

To overcome those challenges, we propose to use an en-
coder composed of a single recurrent block. Being recurrent,
the number of pyramid levels L can be changed on the fly
to suit the current input better. For our experiments, we
add one more feature pyramid level each time the input
size doubles in relation to the training size. Our encoder
first adopts a stem convolution layer with stride 4 to reduce
the input size and projects it into the latent feature space.
Then, our recurrent block is repeatedly used to generate
multi-scale features for building the pyramid. Fig 4 shows
an overview of the operation of our recurrent encoder. It is
worth emphasizing that the proposed encoder acts recurrently
across spatial scales (multi-scale), distinct from the more
traditional time recurrence (multi-frame).

D. Pyramid decoder

The decoder design is similar to RAFT [10], but with es-
sential improvements that significantly decrease the decoding
costs. First, inspired by the findings of SKFlow [36], we
replace the ConvGRU [37] with our more efficient NeXt1D



TABLE I
RESULTS ON SINTEL AND KITTI DATASETS GROUPED BY INFERENCE TIMES. TRAIN RESULTS ARE COLLECTED FROM MODELS WITHOUT

FINE-TUNING, WHILE TEST RESULTS COME FROM THE OFFICIAL BENCHMARKS. FLOPS AND TIME RESULTS ARE BASED ON 1280× 384 INPUTS

MEASURED USING FP16 PRECISION ON A JETSON ORIN NX EMBEDDED SYSTEM. ”RES.” DENOTES THE MAXIMUM FEATURE RESOLUTION, AND

”ITERS.” IS THE NUMBER OF REFINEMENT ITERATIONS. SINTEL VALUES CORRESPOND TO EPE, WHILE KITTI 2015 TO FL-ALL. THE FIRST- AND

SECOND-BEST RESULTS ARE HIGHLIGHTED IN BOLD AND UNDERLINED.

Method Time (ms) FLOPs Params Train set Test set

Name Res. Iters. S.Clean S.Final K15 S.Clean S.Final K15

RAPIDFlow 1/32 1 91 12G 1.6M 4.09 5.19 57.0 - - -
FastFlowNet [6] 1/16 3 94 8G 1.3M 4.13 5.31 53.2 - - -

RAPIDFlow 1/16 2 103 18G 1.6M 2.76 3.96 37.8 - - -
FastFlowNet 1/8 4 130 12G 1.3M 3.36 4.61 41.3 - - -

RAPIDFlow 1/8 3 158 54G 1.6M 2.03 3.36 25.5 - - -
FastFlowNet 1/4 5 186 27G 1.3M 2.89 4.14 33.1 4.89 6.08 11.22
RAFT-small [10] 1/8 3 187 65G 0.9M 3.45 4.93 35.8 - - -

RAPIDFlow 1/8 6 194 79G 1.6M 1.69 3.00 19.9 - - -
RAPIDFlow 1/8 12 267 128G 1.6M 1.58 2.91 17.7 2.03 3.56 6.12
PWCNet [7] 1/4 5 295 180G 9.3M 2.55 3.93 33.6 3.45 4.59 7.72
PWCNet-IRR [33] 1/4 5 321 194G 3.3M 2.73 4.05 35.8 - - -
RAFT-small 1/8 12 346 185G 0.9M 2.19 3.54 26.1 - - -
FlowNet C [11] 1/4 5 363 94G 39.1M 4.31 5.87 - 6.85 8.51 -
Flow1D [23] 1/8 3 380 340G 5.7M 2.46 4.01 31.7 - - -
RAFT [10] 1/8 3 395 374G 5.2M 2.13 3.62 26.0 - - -
LiteFlowNet 3 [34] 1/4 5 471 185G 7.5M - - - 2.99 4.45 7.34
LiteFlowNet [12] 1/8 5 559 320G 5.3M 2.48 4.04 28.5 4.53 5.38 9.38
Flow1D 1/8 12 648 703G 5.7M 1.98 3.27 22.9 2.23 3.80 6.27
RAFT 1/8 12 780 805G 5.2M 1.43 2.71 17.4 1.60 2.85 5.10
FlowNet 2 [35] 1/4 23 787 409G 162.5M 2.02 3.14 30.3 4.16 5.74 11.48

GMFlow [20] 1/4 2 1860 1109G 4.7M 1.08 2.48 23.4 1.74 2.90 9.32
SKFlow [36] 1/8 12 2719 1167G 6.2M 1.22 2.46 15.5 1.28 2.27 4.84
CRAFT [19] 1/8 12 2749 1809G 6.3M 1.27 2.79 17.5 1.45 2.42 4.79
GMFlowNet [21] 1/8 12 3232 1083G 9.3M 1.14 2.71 15.4 1.39 2.65 4.79
FlowFormer [17] 1/8 12 3653 1812G 16.1M 0.95 2.35 14.7 1.14 2.18 4.68

block. Second, we equip the decoder with a gated upsample
module [38] but also use NeXt1D layers to reduce the cost
of keeping the decoding state across different pyramid levels.
Finally, since we start our decoding stage with small feature
maps, we do not need RAFT’s correlation pooling trick [10]
to explore larger contexts, which leads to a noticeable
reduction in decoder parameters.

Our pyramid decoder uses iterative refinement [33], [39]
applied to feature pyramids to produce highly detailed flow
estimations gradually. We uniformly distribute the total re-
finement iterations N across all pyramid levels as NL =
⌈N
L ⌉. We use the NeXt1D block at each level to refine

the previous flow estimation NL times (see Fig. 2). Before
moving to the next pyramid level, we forward the current
decoder state alongside finer-grained context features through
the gated upsample module to update the state.

We add a convex upsample module [10] at the last pyramid
level to produce sharper flow fields at the original resolution.
Our experiments use the convex upsample at the pyramid
level with stride 8. The remaining levels are upsampled using
bilinear interpolation.

E. Loss function

The adopted loss term L is similar to feature pyramid
architectures based on RAFT [10], [38], [40], where different

upsampling functions ϕl are used depending on the pyramid
level l. We apply convex upsampling for outputs with stride
8 and bilinear upsampling otherwise to resize the network
outputs to the original resolution and then compute the L1
norm to the groundtruth:

L =

L∑
l=1

NL∑
n=1

γ(L−l+1)NL−n∥ϕl(Fl,n)− FGT ∥1, (2)

where γ < 1 is a scalar to decrease the significance of earlier
predictions, Fl,n is one of the intermediate predictions of our
model, and FGT is the groundtruth optical flow.

IV. EXPERIMENTAL RESULTS

A. Implementation details

The training pipeline starts by pretraining on the Fly-
ingChairs dataset [11] followed by the FlyingThings3D [41].
We use a batch size of 8 and pretrain for 10 epochs in the
former dataset and a batch of 4 and 10 epochs for the latter.
For the MPI-Sintel benchmark [42], we fine-tune the model
for 4 epochs in a mixed dataset combining FlyingThings3D,
KITTI 2015 [43], HD1K [44], and Sintel samples. For
KITTI, we start from the Sintel model and further fine-tune
it for 300 more epochs on the KITTI dataset. The model
is trained on one NVIDIA RTX3090 GPU, with the same



Fig. 5. Qualitative results of comparable methods at different time requirements. Our method can be as fast as FastFlowNet while producing noticeably
better results. We can also increase the number of refinements and achieve results comparable to RAFT while running at almost three times its speed.

optimization and parameters as RAFT [10]. More specific
details are available in the source code.

B. Comparison with the state-of-the-art

1) Quantitative results: We compare RAPIDFlow against
other methods in Tab. I. We test five variants of our method
that offer different accuracy and speed tradeoffs (see Tab. II).
We follow the standard evaluation metrics and adopt the
average End-Point Error (EPE) for Sintel and the percentage
of outliers (Fl-All) for KITTI 2015 results. We achieve the
best results in most time categories while running at the
fastest speeds. RAFT-small and FastFlowNet still have a
size advantage, but RAPIDFlow runs faster and has better
accuracy. One of the reasons we outspeed FastFlowNet
despite the higher FLOPs is that FastFlowNet makes heavy
use of poolings, which are not counted as FLOPs but still
take processing time.

Our method offers very competitive tradeoffs between
accuracy and speed. We achieve an average of only a 15%
accuracy gap compared to RAFT while running almost three
times faster. For comparison, PWCNet is slightly slower than
our method, but its accuracy is 76% worse than RAFT. Even
Flow1D still shows higher errors than RAPIDFlow despite
having larger computational costs. More recent methods
(bottom of Tab. I) can achieve even better results, but they
have significantly higher computational costs and are less
suitable for embedded devices.

2) Qualitative results: We compare some qualitative re-
sults of RAPIDFlow against other state-of-the-art methods
with comparable performance in Fig. 5. Compared to Fast-
FlowNet, our method avoids large estimation errors and
produces sharper results. RAFT-small suffers from a lack
of details at the motion boundaries due to using eight-

times bilinear upsampling. With more iterations, we can even
produce some results comparable to RAFT.

3) Memory scale: Memory usage is a crucial factor in
developing methods for limited-resource devices. To com-
pare the memory usage with previous methods, we analyze
how the memory requirements increase according to changes
in the input size. We measure memory allocation using the
pynvml [45] package to compute the difference before and
after loading a model in the device. We adopt RAFT’s effi-
cient correlation layer to avoid building the full correlation
volume. The results in Fig. 6 show that our method has one
of the lowest memory requirements.

4) Scale robustness: One of the advantages of our re-
current design is its ability to adapt to inputs of various
scales by changing the pyramid levels. Here, we conduct a
study to check how a change in the scale (size) of the input
affects the predicted flow. Our study consists of applying
bilinear upsampling to multiply the input image by a given
scale. The enlarged image is put through the network, and
then the output flow is downsampled back to compare to the
groundtruth resolution. RAPIDFlow adds one more pyramid
level each time the input scale doubles.

As Tab. III shows, our approach maintains the most stable
performance even when increasing the input by up to four
times. At larger scales, we achieve the best results in all
tests. Considering the degradation caused by increasing the
scale from 1 to 4, our results only drop by 11% on Sintel
and 2% on KITTI, significantly better than the second most
scalable method, PWCNet, which shows drops of 63% and
46%, respectively. Notably, RAFT and Flow1D (a variant
of RAFT) show the largest degradations by the changes in
scale. This likely happens because the high-resolution feature
maps they use for the matching stage are more influenced by



Fig. 6. Memory consumption according to the input size. Our method has
low memory requirements, comparable to RAFT-small and FastFlowNet.
The memory was measured using FP16 precision and RAFT’s local corre-
lation operation.

TABLE II
CONFIGURATIONS OF THE TESTED VARIATIONS OF RAPIDFLOW.

Res. Iters. (N) Pyr. strides Num. levels (L) Level iters. (NL)

1/32 1 32 1 1
1/16 2 32, 16 2 1
1/8 3 32, 16, 8 3 1
1/8 6 32, 16, 8 3 2
1/8 12 32, 16, 8 3 4

changes in the input size than deeper pyramidal approaches.

C. Ablation study

We evaluate the importance of our proposed components
by analyzing their impact on the results. All variants are
trained on the FlyingChairs and FlyingThings3D datasets.
The following sections discuss the contributions of each
component in more detail.

1) Recurrent encoder: We first compare our recurrent
encoder with a regular ResNet [27] (as in RAFT). The first
comparison in Tab. IV shows that using a ResNet backbone
causes a noticeable drop in performance and an increase in
model size, highlighting the proposed encoder’s efficiency.
We also check the impact of removing the recurrency from
the encoder (layers are not shared across scales). As the
second comparison in Tab. IV shows, sharing the layers
decreases the model size by more than 25%, with a minimal
impact on the accuracy. More importantly, the recurrent
version adopted in RAPIDFlow can dynamically change the
feature pyramid depth, making the model more robust to
changes in the input size (see Tab. III).

2) Gated upsampling: The third comparison in Tab. IV
shows that maintaining the complete decoder state across all
pyramid levels contributes to better estimation results.

3) Decoder 1D block: The fourth comparison in Tab. IV
shows that the NeXt1D block efficiently replaces the Con-
vGRU (as proposed by RAFT). RAPIDFlow produces similar
results to the ConvGRU variant but with 20% less parameters
and FLOPs.

TABLE III
EPE RESULTS USING INPUTS OF DIFFERENT SCALES. ∆1 DENOTES THE

DIFFERENCE TO THE 1× RESULTS. THE FIRST- AND SECOND-BEST

RESULTS ARE HIGHLIGHTED IN BOLD AND UNDERLINED.

Method Sintel Final KITTI 2015

1× 2× 4× (∆1) 1× 4× (∆1)

FlowNet C [11] 5.6 7.5 11.2 (99%) 15.4 24.5 (59%)
FastFlowNet [6] 4.2 4.7 8.3 (99%) 12.7 24.9 (96%)
PWCNet [7] 4.1 4.5 6.7 (63%) 10.6 15.5 (46%)
LiteFlowNet [12] 3.9 4.8 6.9 (75%) 11.0 22.9 (108%)
Flow1D [23] 3.4 5.9 20.5 (494%) 7.6 35.7 (366%)
RAFT [10] 2.7 3.8 11.0 (305%) 5.4 31.8 (479%)
RAPIDFlow 2.8 2.8 3.1 (11%) 5.8 5.9 (2%)

TABLE IV
TOP: ABLATION RESULTS USING DIFFERENT ENCODER AND DECODER

CONFIGURATIONS. BOTTOM: RESULTS OF RAFT USING THE SAME

NUMBER OF CHANNELS OF OUR MODEL.

Method Params FLOPs S.Fin (EPE) K15 (Fl-All)

RAPIDFlow 1.6M 128G 2.89 17.7

ResNet enc. 2.2M 128G 3.05 20.8
Our enc. w/o rec. 2.3M 128G 2.87 17.2
w/o Gated Upsample 1.5M 127G 2.96 18.0
with ConvGRU dec. 2.0M 161G 2.84 17.8

RAFT-reduced 2.6M 478G 3.15 18.2

4) RAFT-reduced: We demonstrate the effectiveness of
RAPIDFlow’s design by comparing its results against a vari-
ation of RAFT using the same number of feature channels
per layer (RAFT-reduced). The last results in Tab. IV show
that RAFT-reduced still has noticeably larger computational
requirements than ours, mainly due to the lack of pyramids
and the use of correlation pooling [10]. We also achieve bet-
ter results in both benchmarks, with a noticeable difference
in the Sintel evaluation.

V. CONCLUSIONS

We presented a fully recurrent encoder-decoder structure
to estimate optical flow with reduced computational costs.
Our RAPIDFlow model has a recurrent encoder that can
be dynamically changed during inference to produce feature
pyramids of various lengths to better adapt to the input size.
The experiments on an embedded system show that our
model can be configured as fast as FastFlowNet or be close
to RAFT while running at significantly faster speeds. Our
reported results do not include optimizations such as integer
quantization or specialized, efficient layers for embedded
devices. Therefore, careful tuning could make our model
even more efficient for deployment. For example, optimizing
RAPIDFlow using the default configuration of TensorRT [46]
decreases the inference time by 27% from 267 to 193 ms.
Our computational cost could also be further reduced by
adopting sparse operations [6], [24] and improving the effi-
ciency of the correlation sampling [9] stage. These directions
will be explored in future works.
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